9,360 research outputs found

    SMAUG: a new technique for the deprojection of galaxy clusters

    Full text link
    This paper presents a new technique for reconstructing the spatial distributions of hydrogen, temperature and metal abundance of a galaxy cluster. These quantities are worked out from the X-ray spectrum, modeled starting from few analytical functions describing their spatial distributions. These functions depend upon some parameters, determined by fitting the model to the observed spectrum. We have implemented this technique as a new model in the XSPEC software analysis package. We describe the details of the method, and apply it to work out the structure of the cluster A1795. We combine the observation of three satellites, exploiting the high spatial resolution of Chandra for the cluster core, the wide collecting area of XMM-Newton for the intermediate regions and the large field of view of Beppo-SAX for the outer regions. We also test the validity and precision of our method by i) comparing its results with those from a geometrical deprojection, ii) examining the spectral residuals at different radii of the cluster and iii) reprojecting the unfolded profiles and comparing them directly to the measured quantities. Our analytical method yields the parameters defining the spatial functions directly from the spectra. Their explicit knowledge allows a straightforward derivation of other indirect physical quantities like the gravitating mass, as well as a fast and easy estimate of the profiles uncertainties.Comment: 24 pages, 11 figures, 3 tables; emulateapj; accepted for publication in the Astrophysical Journa

    Metal distribution in sloshing galaxy clusters: the case of A496

    Full text link
    We report results from a detailed study of the sloshing gas in the core of A496. We detect the low temperature/entropy spiral feature found in several cores, we also find that conduction between the gas in the spiral and the ambient medium must be suppressed by more than one order of magnitude with respect to Spitzer conductivity. Intriguingly, while the gas in the spiral features a higher metal abundance than the surrounding medium, it follows the entropy vs metal abundance relation defined by gas lying outside the spiral. The most plausible explanation for this behavior is that the low entropy metal rich plasma uplifted through the cluster atmosphere by sloshing, suffers little heating or mixing with the ambient medium. While sloshing appears to be capable of uplifting significant amounts of gas, the limited heat exchange and mixing between gas in and outside the spiral implies that this mechanism is not at all effective in: 1) permanently redistributing metals within the core region and 2) heating up the coolest and densest gas, thereby providing little or no contribution to staving of catastrophic cooling in cool cores.Comment: Accepted for publication on A&

    Non-equilibrium dynamics of the Bose-Hubbard model: A projection operator approach

    Full text link
    We study the phase diagram and non-equilibrium dynamics, both subsequent to a sudden quench of the hopping amplitude JJ and during a ramp J(t)=Jt/τJ(t)=Jt/\tau with ramp time τ\tau, of the Bose-Hubbard model at zero temperature using a projection operator formalism which allows us to incorporate the effects of quantum fluctuations beyond mean-field approximations in the strong coupling regime. Our formalism yields a phase diagram which provides a near exact match with quantum Monte Carlo results in three dimensions. We also compute the residual energy QQ, the superfluid order parameter Δ(t)\Delta(t), the equal-time order parameter correlation function C(t)C(t), and the wavefunction overlap FF which yields the defect formation probability PP during non-equilibrium dynamics of the model. We find that QQ, FF, and PP do not exhibit the expected universal scaling. We explain this absence of universality and show that our results compare well with recent experiments.Comment: Replaced with the accepted version, added one figure. 4 pages, 4 figures, to appear in Phys. Rev. Let

    Renormalization flow for unrooted forests on a triangular lattice

    Get PDF
    We compute in small temperature expansion the two-loop renormalization constants and the three-loop coefficient of the beta-function, that is the first non-universal term, for the sigma-model with O(N) invariance on the triangular lattice at N=-1. The partition function of the corresponding Grassmann theory is, for negative temperature, the generating function of unrooted forests on such a lattice, where the temperature acts as a chemical potential for the number of trees in the forest. To evaluate Feynman diagrams we extend the coordinate space method to the triangular lattice.Comment: 26 pages, 4 figure
    • …
    corecore